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The effective characteristics in inhomogeneous media, including composites, are determined. The fundamental boundary-value 
problem and its dual for determining the effective characteristics in an inhomogeneous medium of not necessarily regular structure 
is formulated. The example is a multilayered medium is given. © 1997 Elsevier Science Ltd. All riglats reserved. 

1. The idea of effective characteristics was introduced when constructing statistical theories for defining 
the properties of ~homogeneous materials [ 1]. Suppose a linear operator L is such that, for the equation 

Lu = f (1.1) 

Green's operator G: L G  = 1 (where I is the identity operator) is known. Then the solution of operator 
equation (1) has the form u = Gf. If the input data f are not random, for the input field (u) we 
have 

(u) = (G) f  (1.2) 
The effective operator L* is defined as follows: 

L*<u) = f (1.3) 

From (1.2) and (1.3) we obtain that 

C =(G)-' 

i.e. the problem of averaging stochastically inhomogeneous materials reduces to constructing the 
averaged Green's tunction. It is usually not possible to obtain this function exactly, but there is a fair 
number of approximate approaches to this problem [2-5]. 

Below we present a deterministic approach to the problem of the effective characteristics of the 
thermal, electrical, magnetic and partially elastic properties of inhomogeneous materials, including 
composites. 

2. Suppose that in a certain body, having a volume V and bounded by a closed surface E, we are 
given a specific form of the operator equation (1.1) for a certain quantity u in the form of an equation 
and a boundary condition 

+ : ( x )  = o (2.1) 

u[x= uO(y), y • X (2.2) 

We will assume always thatx -= Xl, X2,X3; ~-- ~1, ~2, ~3 • Vandy, rl e Z. Summation from 1 to 3 is carried 
out over the repeated index, denoted by a lower-case Latin letter, and from 1 to 2 over the index denoted 
by a capital Latin letter. For partial derivatives we will use the notation ¢p: --- &p / ~xi, % -- &p / ~-. We 
will denote by angle brackets.the mean value of a quantity over the volume, indicating if necessary the 
variable over which averaging is carried out 
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Problem (2.1), (2.2) will be called the first boundary-value problem (Problem 1). 
If, on the boundary of the body Y_,, we are given the condition 

Ciyu jn~J z = So(y) (2.3) 

where ni are the components of the unit vector of the outward normal to the surface Z, problem (2.1), 
(2.3) will be called the second boundary-value problem. 

For the dual formulation of the second boundary-value problem we will introduce the quantity 

and the defining relations 

e. i - u, (2.4) 

a, = Cite. j, e, = Jooj,  CoJj, = J O G  = 8i, (2.5) 

where C o and J.. are the components of positive definite mutually inverse second-rank tensors [6] If 
they depend on the coordinates (C O = C..(x), Jo = Jo(X)), the medium is said to be mhomogeneous, 

. . . .  . lJ . . . . .  
while if these functmns are dlscontmuous the inhomogeneous medmm is said to be composite [5]. 

Using notation (2.4) and (2.5), Eq. (2.1) and boundary condition (2.3) can be rewritten in the 
form 

(~ii (X)  + f ( X )  = 0 (2.6) 

a,nilz = So (y )  (2.7) 

To Eq. (2.6) we must add the so-called compatibility equation, which, using (2.5) can be written in 
the form 

E,,k = o (2.8) 

The second boundary-value problem in the dual formulation is specified by Eqs (2.6) and (2.8) and 
boundary condition (2.7) (Problem 2). 

We will not dwell on the conditions for these boundary-value problems to be solvable and on whether 
a generalized solution exists in the case of a composite medium (see [7]). Note that if u(x) denotes a 
temperature field, Co.(x ) will be the components of the thermal conductivity tensor, ai(x) will be the 
components of the heat flux, e/(x) will be the temperature gradient and f(x) will be the density of the 
mass heat source. If u(x) is the electrostatic potential, Co(x ) will be the components of the permittivity 
tensor, ei(x) will be the components of the electric field vector and ai(x) will be the electric induction. 
Using these quantities we can also discuss a magnetic field, and by increasing the rank of the tensors 
we can also include an elastic field (we deal with this topic in Section 6). 

To determine the effective tensors, the components of which are denoted by Cij and J0, respectively, 
we will formulate the first and second boundary-value problems with special boundary conditions and 
when there is no external field [8]. 

The first special boundary-value problem (Problem 10) consists of solving the homogeneous equation 
(2.1), when boundary conditions (2.2), in the form 

UIx = TiYi ,  Yi  --  c o n s t  (2.9) 

are satisfied. 
We will give the second special boundary-value problem (Problem 20) in dual formulation. It consists 

of solving the homogeneous equation (2.6) when the compatibility condition (2.8) and the boundary 
condition (2.7) are satisfied in the form 

f f  ini l x = '~ ini ( Y ) , "~i = c o n s t  (2.10) 

Identities are known [5] for Problems 1 and 10 
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and for Problems 2 and 20 

(Oi(x)) = I ! So(,)yid~y +(f(x)xi)= '~i 

From the solution of Problem 10 we obtain the components of the effective tensor C,~ 

(oi(x))= Ci;y j (2.11) 

and from the solution of Problem 20 we obtain the components of the effective tensor 

(Ei(X))= J;'c j (2.12) 

The main hyl~)thesis, used in the mechanics of composites, asserts that for a statistically 
homogeneous medium tensors with components C} and J} are mutually inverse [2]. 

3. Exact values of the effective tensors can only be obtained for a small class of composites [2]. This 
is most often due 1to the difficulty in solving the Problems 10 and 20. 

The method of,xeraging, recently developed in a number of publications [5, 9, 10], enabled the range 
of accurately obtained effective characteristics to be extended somewhat, due to a more convenient 
formulation of the problems for determining them [5, 11-13]. This applies to so-called periodic structures 
[5, 9], since the averaging procedure can be applied to such structures. However, it should be noted 
that the effective moduli of elasticity obtained, for example, for multilayered composites with a periodic 
structure and even mierostresses (stresses in each component of the composite), turn out to be justified 
for an arbitrary inhomogeneity along one coordinate [5]. 

The purpose of the present paper is to formulate special boundary-value problems for obtaining the 
effective characteristics of media with an arbitrary inhomogeneity convenient for investigation. The 
boundary conditions (if they exist) of such special boundary-value problems must be homogeneous, 
while the free te:rm of the equations depends on C!i(x) or J#(x), i.e. they must characterize the 
inhomogeneity of the structure of the material in questmn. 

We will assume that Green's function of Problem 1 G(x, ~) and of Problem 20 G(x, ~) are known 

[Cu(x)G,.j(x,~) L = - * ( x -  ~) (3.1) 

Cij (Y)Gj (Y, ~)ni (Y~ x = 0 

We will also introduce the following notation 

E,(xA) = G ,(x,~), E(x,~)- C~(x)G j(x,~) 

%(x)P, 
Note that it follows from (3.1) and (3.3) that 

(3.2) 

(3.3) 

(3.4) 

The solution of Problem 1 can be expressed in terms of Green's function G(x, ~) using (3.2) as follows: 

u(~) = - ! F, (y, ~)n, (y)u o (y)dZy + I G( x, ~)f(x)dV, (3.5) 
Z v 

e~(D =-j r,~(y,~)n,(y)uo(y)ax, + I Ej(x,~)f(x)dV, 
£ V 

o j (l~) = -C j ,  (l~) ~ Fil, (y, t~)ni(y)uo(y )dT_, r + S F j (  x, l~) f ( x )dVx 
X V 

(3.6) 

(3.7) 
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while the solution of the second boundary-value problem (2.1), (2.3) (problem 2) can be expressed in 
terms of Green's function G-(x, ~) using (3.3) as follows: 

u(~) = I G(y, ~)S o(y)d'Zy + I G(x,~) f (x )dV x 
v 

(3.8) 

Ei(~) : I Gu(Y,~)So(y)d~y + I Ei(x,~)f (x)dVx 
Z v 

(3.9) 

0,(~) : C# (~)! ~,(y,g)So(y)d~y + ! F~(x,~)f(x)dV~ (3.10) 

We will use (3.5)-(3.7) for Problem 10. Applying the Gauss-Ostrogradskii theorem we obtain 

Comparing (2.11) and (3.12) we obtain 

We use (3.8)-(3.10) in exactly the same way for Problem 20. Using the Gauss--Ostrogradskii theorem 
we obtain 

U(~)f'CjV(Ej(X,~))x, I~i(X)--'--'~jV(Ejli(X,~))x (3.14) 

o i (~) = x j VC a (~)( t i ,  ~ ( x, ~))~ (3.15) 

Comparing (2.12) and the second formula of (3.14) we obtain 

J~ = V((~ ju(x ,~) )x)  ~ (3.16) 

It can be seen that the tensors with components (3.13) and (3.16) are symmetrical. It can be shown 
that they are positive definite. 

Note that, using Green's functions, one can construct integral operators on the boundary of the body 
which are a continual analogue of II'yushin's matrices [7] 

Uo(q) = J(7,(y,'q)So(y)dgy 
z 

So (•) = -nj (~)C~k (11)[. ria (y, n)ni(y)uo(y)dXy 
Z 

4. We will now formulate the boundary-value problem for finding the components of the effective 
tensor C~ of (3.13). We will put 

(4.1) 

It then follows from (3.13) that 

= ( c,, ( )lV j,k ) (4.2) 

We now uses notation (4.1) and substitute the expressions u(~) and oi(~) from (3.14) and (3.12) into 
the homogeneous equation (2.1) and condition (2.9). Taking into account the fact that the quantities 
T/are arbitrary, we obtain the required formulation of the boundary-value problem for the quantities 
Ni 

[Cik ({)Nj, k ({)],i + Cqu ({) = 0 (4.3) 
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Ni(TI~z = 0 (4.4) 

Indeed, the fight-hand side of Eq. (4.3) depends on C0(~), while boundary condition (4.4) is homo- 
gencous. Consequently, the solution of problem (4.3), (4.4) is related to the structure of the material. 

Suppose, for cx~anple, that C r depend on a single coordinate ~ = ~. Then (4.3) can be converted 
. . . ° I ~  ° 

into an ordinary dlfferentlai equation 

[C33(;)N;(;) ]" + C;j(;) = 0 (4.5) 

where the prime denotes a derivative with respect to ~. Boundary condition (4.4) takes the form 

(4.6) Ni(O) = N~(I) = 0 

The solution of :problem (4.5), (4.6) is as follows: 

From (4.7) and 114.2) we obtain 

I ~ I,,.  W ~ - I  C 

.,-~".-\ c. I \c,~l\c~,l \c~,l 
From an isotropic medium, i.e. for Co(~) = ~.(~)8~j, we have from (4.8) 

5. We will consider Problem 2o to find the components of the effective tensor ~ .  We will put 

M,(~)-- V(/~i(x,{)), (5.1) 

It follows from (3.16) that 

4--(M,,,) (5.2) 

We use the notation (5.1) and substitute (3.15) into homogeneous equation (2.6) and condition (2.10). 
We obtain 

• , [c~ (OM,,j e,)],, = o 

~%01)Mj~(~)ni( l l ) lz  = ~jnj(~) 

The compatibility equation is satisfied identically. Using the fact that the quantities xj are arbitrary, 
we obtain an equation and a boundary condition for Mk(~) which, introducing the quantity 

Pij (~) =- Ca (~)M jlk (~) (5.3) 

we write in the form 

P,,,~.(~) = O. P~,(~)n,(rl)  = n, (rl) 

We write the compatibility equation (2.8) in the form 

~ .  [ J , , ~ o ~ ( o ] .  =o 

It follows from (3.4), (5.5) and (5.1) that 

(e,,~o) = 8,, 

(5.4) 

(5.5) 

(5.6) 
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while from (5.2) and (5.3) we have 

= (5.7) 

However, boundary-value problem (5.4)-(5.6) also does not satisfy the requirements formulated in 
Section 3 for obtaining effective characteristics. Hence, we introduce the new quantities Lii 

P,j(~) = 8,j+ ~0, L~(~)  (5.8) 

Equation (5.4), after substituting (5.8) into it, is satisfied identically. The compatibility equation (5.5) 
takes the form 

~0k ¢~,- [Ji,({)Lt.~, ({)L + %' J, ra ({) = 0 (5.9) 

i.e. its fight-hand side depends only on J0({)" Boundary condition (5.4), after substituting (5.8) into 
it 

n,(n) % L~(n)[~ = 0 (5.10) 

becomes homogeneous. Consequently, boundary-value problem (5.9), (5.10) corresponds to the stated 
requirements. From (5.7) we determine the effective characteristics 

J,; = (Jo (~)+ %-  J a (~)Lm (~)) (5.11) 

and it follows from (5.6) that 

%a (K~(~))=O (5.12) 

Consider the case when Y~/depends on one coordinate, for example, ~3 = ~. Equation (5.9) in this 
case becomes an ordinary differential equation 

[ , ~uepta J,p(~) ' + %, J,t(~) = 0 (5.13) 

while boundary condition (5.10) 

,n lE.Lb(~ z = 0 

imposes no limitations on the relationship L0(~). However, we have limitations on these functions which 
arise from (5.12) 

(5.14) 

Solving Eq. (5.13) when conditions (5.14) are satisfied we obtain 

• j - i  -I  - I  -1 -1 

where J ~  are the elements of the 2 x 2 matrix which is inverse to the matrix with elements Jo. 
From (5.11) we obtain 

j ;  .~..(j/~(~)+Elu. ' j i K ( ~ ) L ; L )  - l  -1 - '  - l  -1 
, __(,,,)÷(,.,o)(,,.) 

For an isotropic medium, i.e. when 

we have from (5.15) 

./~(~)'= s o / ~.(~) 
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It can be established by a direct check that tensors (4.9) and (5.15) are mutually inverse, i.e. the 
fundamental hypothesis formulated in Section 2 for media with a one-dimensional inhomogeneity is 
satisfied. 

6. To obtain the effective moduli of elasticity and the effective elastic compliances the equations are 
somewhat more complicated. We will only give the final formulation of the boundary-value problems 
(for details see [1~¢]). 

The components of the effective elasticity-modulus tensor is obtained by averaging the expression 

c ; .  : ( co. (0 + c o .  (oN,.,,,,. (0 ) 
The quantities NOk are found from the system of differential equations with boundary conditions 

[ Cq.(~) + Cqm (~)N,wai. (~) ]q = O, Nmkl~ : 0  

To obtain the oamponents of the effective elastic-compliance tensor it is necessary to average the 
expression 

The quantities LvqkZ satisfy a system of differential equations with boundary conditions 

e ~ , , ~  L~,,n~(ll~z = 0 

Moreover, the quantities Lpqld must satisfy the conditions 

For the case when the moduli C0k i depend only on one coordinate, the effective elasticity-modulus 
tensor and the elastic-compliance tensor are obtained in exactly the same way as for a multilayered 
medium, where they are mutually inverse. 
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